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Global oscillation mechanism in the stochastic Lotka model
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The microscopic one-parameter kinetic model of the oscillatbryB—2 B reaction (Lotka mode] is
studied using direct Monte Carlo simulations and analytical methods. Percolation is proposed as the mecha-
nism of global oscillations that are not limited to any finite size of a system. An analytical estimate of the
oscillation frequency is derived and compared to computer simulations. We also observe the transition from
synchronized oscillations to specific ? noise in two dimensions which was previously reported for self-
organized critical models.
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I. INTRODUCTION was studied by Howet al.[9]: oscillations were found in two
and three, but not in one, dimension. As was shown recently
The necessity for research on surface reaction systems [i40], forced periodic perturbation of the control parameter in
dictated by their enormous practical importance for heterothe Lotka model leads to a series resSonance phenomena
geneous catalysis, as well as by many complex and fascina®n the contrary, the recently studigtl] Lotka-Volterra lat-
ing nonlinear phenomena they exhibit, such as spatial antice model has more parameters and shows less unpredictable
temporal oscillations, kinetic phase transitions, pattern forpehavior than the model under consideration.
mation, chaotic behavior, etc. A comprehensive review of The Lotka model is of specific interest in several aspects.
experimental results in this area is given in Héf. First, the question how local oscillations in different areas of
In recent years, significant progress has been achieved ftie surface become coherent is the subject of wide discussion
stochastic models of surface reaction systems, which allown the literature on surface reaction systems. The existence of
one to study in great detail the mechanisms responsible faglobally synchronized oscillations not limited to any finite
the above-mentioned phenomdia-5]. In these models el- range is unique for such a simple model as the Lotka model.
ementary reaction steps, such as adsoption, reaction, and ddere complex systemg3,4], on the contrary, exhibit oscil-
sorbtion, are represented by a set of stochastic rules th#dtory behavior only up to a certain size of the system. In
describe possible changes in the system configuration. Thiaese systems the mechanism leading to a synchronization is
transition probabilities can be related to reaction rates byarticle diffusion with a finite rate. Diffusion usually brings
considering the master equation of the prodé&gs synchronization only up to some finite scale which depends
One of the advantages of these models is their simplicityon the diffusion constari,12]. Only the latest resear¢fi3]
and the possibility of straightforward simulations. However,showed the principal possibility of the amplification of local
due to the diversity of reactions taking place in real systemspscillations in a system with diffusiotby the so-calledsto-
the number of parameters is usually too large for a completehastic resonangethus transforming them into global oscil-
analysis. Thereforsimplifiedmodel systems are of particular lations in a narrow range of the system parameters. In the
interest. Such models with a minimum number of parameter&otka model we have the seemingly more trivial possibility
can represent, however, the essential features of a reaf global synchronization via a chain of infinitely fast reac-
system. tions A+ B—2 B. However, the condition of an infinite re-
The simplest stochastic model possessing temporal oscikction rate is not enough for synchronization because both
lations is a Lotka-type lattice model introduced in Réf].  oscillating and steady states are observed in the Lotka model
There are two kinds of particles in the Lotka model, sy, depending on the parametér A study of the transition be-
andB. ParticleA adsorbs on the lattice with rafe B desorbs  tween these two regimes has not been done yet and it is one
with rate 1— ¢, and the only bimolecular reaction is the in- of the tasks in the present study.
finitely fast autocatalytic conversiofh+B— 2 B. Mai et al The second reason of interest in the Lotka model is its
[6] compared the results given by different analytical ap-critical behavior which was studied numerically by Hovi
proaches to the results of Monte Ca(MC) computer simu- et al. [9]. They have found a power law dependence in the
lations, which appear to be the most reliable. The systersize distribution of the reaction avalanches with the cutoff
shows two different kinetic states: highly regular temporalsize diverging in the limit{— ¢.=0. This fact and some
oscillations of global particle densities and a steady statedditional features we report on in the present papech as
with nearly constant global coverages. Concentration oscili/f noise are common to forest-fire models of self-organized
lations appear for small values of the control paraméter criticality [14]. Our findings suggest that the criticality of the
Similar simulations in the Lotka model were observed in theLotka model plays a significant role in synchronization.
reviews by Jansef7] and Nieminen and Jansé8], who In this paper, we compare the Lotka model to the well-
also reported oscillations. The role of the space dimensiostudied site percolation problem on a discrete lattice. We
discuss a special synchronization mechanism—percolation
mechanism—and propose an analytical solution based on a
*Electronic address: slava@latnet.lv simplified analysis of kinetic equations. The analysis is valid
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for the coherently oscillating state near the critical pdint  of B in the Lotka model based on Eq4)—(3). The absence
Analytical expressions of the oscillation frequency are therof such a source brings a principal instability of oscillations
obtained and tested by MC simulations on different regulaion finite lattices. If occasionally all particleB desorb from
two-dimensional lattices. In addition, the transition to thethe surface, then the autocatalytic reaction is stopped and the
steady state is studied in particular detail. Analysis of thdattice becomes poisoned by particks
global concentration power spectra reveals a powerflatv The nonzero probability of such a “catastrophe” poses
in the continuous part of the spectrum. Comparison of dif-methodical difficulties for the numerical study of oscillations
ferent data enables us to draw a qualitative picture of oscilin the case of larg8 desorbtion rateésmall {’s). In order to
lations that connects synchronization on an arbitrary largevoid use of extra large lattices or limited simulation times
scale to the criticality of the Lotka model. one has to modify the model. One of the possibilifiésis

The structure of the paper is the following. Section Il the so-called constarB-coverage ensemble method. How-
gives an exact model definition and parameter description®ver, this technique does not provide the correct time depen-
Besides the standard Lotka model, we consider also the pogence, which is essential to our study. Instead of modifying
sible additionalA— B reaction. Details of MC simulations simulation algorithm, we consider a weak sourceBof
and power spectra analysis are discussed in Sec. Ill. The key
section is Sec. 1V, in which we introduce a simplified oscil- A(ads)—y>B(ads). (4)
lation scheme based on the percolation mechanism and ob-
tain an analytical expression for the oscillation frequency. The new reaction should be understood as a weak noise of
Simulation results are reported in Sec. V and discussed iparticlesB that could be present in model situatioft®nd
connection with analytical results and criticality in Sec. VI. Weakening fluctuation on a Cata|yst surface or spontaneous

A brief summary in Sec. VII completes the paper. infection in biological interpretation In all cases when this
additional reaction is switched on, the newall parameter
Il. MODEL DESCRIPTION v lies in interval (10 =10 ®°) and conditiony<{ is satis-

: . fied.
The Lotka model can be interpreted in terms of heteroge-  The main macroscopic observables of the model are glo-
neous catalysis as the following set of reactions between twg, particle concentrationgcoverages Cy(t)(X=*, A,B)

kinds of particlesA andB and a vacant site: which we define as fractions of lattice sites occupied by par-
ticles X at timet. The concentrations obey the conservation

s
A(gas +*—A(ads, (1) law
1-¢ C, (D) +Ca(t) +Cpg(t)=1. 5
Bads *B(gag ++, - # (1) +Ca(t) + Cy(t) (5)
The formal exact kinetic equations for the global concen-
A(ads + B(ad3:2 B(ads. &) trations read as follows:
Time is rescaled in a way that the only control parameter %CA(t): {C, (1)— yCa(t)—R, (6)

is the adsorbtion raté for particlesA varying from 0 to 1.

This condition sets the natural dimensionless rate, frequency,

and time units for the model. The autocatalytic reaction in

Eq. (3) takes place every time whehandB occur as nearest dt
neighbors.

Interpretation of the autocatalytic reactifgq. (3)] in the  whereR is the reaction term. As was showv8], this term
Lotka model can be different. One possibility is to considercannot be calculated in the framework of the simplest ap-
A asB plus an additional ligand that desorbs immediately if proximations such as the mean figldF) or pair approxi-

A and B come into contact. More evident is the biological mation. More precisely, such simplified calculations lead to
interpretation of infection spreadiffd5]. If healthy species results totally different from those given by the MC simula-
(A) come into contact with infected one8), then A also  tions and cannot account for oscillations. The difficulties in
become infected, Eq2). Equationg1) and(3) represent the the analytic description of the system lie not in the infinitely
birth of the healthy and death of the infected species, correlarge reaction ratgone can start with some finite rakein
spondingly. Eq. (3) and then take the limiK—o]. The problem is that

The subsequent stages of oscillations for small valugs of the reaction term in Eqg6) and (7) is not the function of
can be understood as follows) immortal healthy specie&  only concentrations like the traditional the MF expression
are born with a constant rate[see Eq.(1)]; (ii) occasional R=KC,Cg or analogous, but the functional of tlspatial
contact with already infected organisms immediately infectdistribution of particles. In the Lotka model, this distribution
the whole cluster, thus turning al’s in it into B’s [see Eq. undergoes nontrivial changes during the reactioe will
(3)]; (iii) infected specie® die out according to Eq(2), relate them later to a percolatipntherefore, the reaction
providing a free substrate for the birth of né\s. term is unknown.

Nontrivial behavior is possible only if some particl8s Despite these difficulties, we are going to show that Egs.
are initially present in the system, because there is no sourdé) and (7) are still useful for an analysis of the problem if

Ce()=—(1-)Cp(t) + yCa() +R, ()
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applied to timaree intervals on which the reaction t&iwan
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a periodic signal The frequency resolution of Ed8) is

be omitted for some reason. The resulting solutions can bdetermined by the half-width of the window function in the
then tailored together based on additional heuristic assumgrequency domain and varies Ag T~ ! with a proportion-

tions about oscillation mechanism in the Lotka system.

IIl. METHODS

A. Simulation procedure

An overview of MC simulation techniques for surface re-

action systems can be found in REE6]. Here we give only

ality factor of the order of unity.
The normalization ofPy(f) satisfies the equation

1 Y (T 2
Ejo Px(f)df~$f0 Ci(bydt, ©)

wherefy=1/(2AT) is the Nyquist aliasing frequency.

a brief description of the simulation procedure that was used Spectral analysis of stochastic signals such as MC simu-

for the Lotka model in our particular study.

We start at time=0 with the lattice randomly filled by
particlesB at fraction 0.5. Time evolution according to Egs.
(1)—(3) is based on a constant time st&p=1/L? and con-
sists of the following steps.

(1) Update the clock—t+At.

(2) Pick a site randomly.

(3) If the site is occupied by, then make it empty with
probability 1— ¢ and go to(1).

(4) If the site is occupied by, then proceed t¢7) with
probability .

(5) If the site is vacant, then fill it withA with probability
; otherwise, return t@l).

(6) Check forB’s in the nearest-neighbor sites. If i
found, then go td1).

(7) Identify all A’s belonging to the same cluster with the
A in the selected site. Turn them all inBis. Go to(1).

A special feature of the Lotka model is the infinite rate of
the autocatalytic step. Since the pioneering work of Ziff
et al. [17] infinitely fast reactions have been successfully

treated by the means of MC simulations. In our algorition
clock updates done until allA— B conversions dictated by
the reaction rule have been processed in §fep

The system was simulated on two-dimensional square, tri-
angle, and honeycomb lattices with the total number of sites

in each lattice (1-16%10°. Periodic boundary conditions
have been applied in each case.
Each simulation lasted for (4—18)10° time units totally.

lation data is more complicated than in the case of a deter-
ministic model. Statistical variance @«(f) grows as the
ratio of the transform window length to the coherence time

of the signal increasd4.8|.

Therefore a more robust amplitude estimate can be
achieved by dividing the whole time interval of available
data into pieces of possibly smaller length and then perform-
ing a separate Fourier transform on each individual subinter-
val. Results are then averaged, thus giving a statistically
more stable power estimate of the cost of the reduced fre-
quency resolution.

Averaging overmm successive subintervals each of length
T leads to an averaged periodogram PSE

m—-1 |n—-1 2

8 .
P(f)l=— > | > wCx(t+IT)e 2
mn? =0 |k=o0

(10)
which is more suitable for the study of noisy signals than
Px(f).

The following iterative procedure was used for estimation
of the main oscillation frequency, and corresponding
powerP(fg).

(1) SampleN values ofCy(t) with AT=275.
(2) Set the initial approximation ofy to fo=¢.
(3) Calculate n— the nearest integer to 1GAT),
m— the integer part oN/n.
(4) Find the maximum ofP(f) in interval (0-fy). Take

The data for analysis were collected only after the systenifS position as the next approximatidy .

had relaxed through a transient period of tine units.

B. Data analysis

. . . é)f

In the present study simulation data are mainly analyze
by calculating the power spectrum of global concentration
Cy(t). Therefore the question of correct power spectrum es

timation is of special significance.

Direct application of a discrete Fourier transformg(t)
sampled atn pointst,=kAT(k=0,1,... n—1), with AT
=T/n, gives a periodogram power spectrum estiméRsb
[18]:

n—1 2

8 i
Px(h=— go W, Cx(t)e 2™t (8)

We use the Hann window functionw,=(1/2)[1
—cos(2rk/n)] to minimize distortions in the estimate of a

(5) Repeat stepg3) and(4) until n does not change.

(6) Assume the main frequendy to be equal to the last
value of f;. The first harmonic power estimate is the value
P(fy) found in step(4).

The above-described procedure is designed to match the

Frequency resolutions f~0.1f, and gives a stable estimate

of the spectral power under the first peak in a discrete spec-
trum if its width is less tham\ f. The values oAT andfj in
steps(1) and (2) are based on a previous analysis of the
Lotka model data.

IV. ANALYTICAL RESULTS

The autocatalytic transformatioh+B—2 B spreads be-
tween the nearest neighbors. This feature of the Lotka model
relates it to standard problems of percolation theory which
we overview very briefly below.

In a standardsite percolationproblem sites of an infinite

spectrum with sharp featurésuch as separate harmonics of lattice are marked with some probability independently
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each of the other. The distribution of clusters consisting ofscale of synchronization, but appears not to affect the oscil-
these marked sites is of a relevant interest. Percolation theotgtion period that we are going to estimate in a moment.
states[19] that aninfinite cluster of marked sites can be  Based on the assumptions made above we use the kinetic
formed with nonzero probability if and only if the marking equations6) and(7) omitting the reaction ternR:
probability p is greater than some threshold valug which
is called thepercolation thresholdThe value ofp, depends
on the dimension and topology of the lattice. The numerical aCA(t):gc*(t)_ YCa(b),
values ofp, for different lattices are cited in many papers
(see, for example, Ref20]). d

Criticality of the standard percolation problem makes all aCB(t)= —(1-0)Cg(1) + yCa(1). (12
the characteristic linear sizes proportional to a single length
scale ¢, which diverges near the percolation threshold as
&,%|pc—p|~". The critical exponeniz depends on the spa- thr
tial dimension of the lattice. Properly defined the averagg
linear cluster size is proportional &, and also diverges at
the percolation threshold.

When performing simulations of a percolation system,
only finite lattices may be used. In this case percolation prop- Ca(T)=pe. (13)
erties depend on the relation between the system’s intrinsic

length scaleé, and the lattice size.. If {,<L, then the The simplified oscillation scheme given above contains
percolation theory for infinite lattices applies well. On the some significant assumptions, which are not necessarily true
other hand, in the close vicinity of the critical point finite- in a real simulation. Let us mention some of the(i:grow-
size effects can be no longer neglected and on&fad.. In jng A clusters may switch t& before or after the percolation
the latter case, instead of the infinite cluster, one observes@reshold is reachediji) the distribution of particles is not
cluster of a linear sizé. spanning the lattice from top t0 exactly random, andii) the turnover to th&-dominant state
bottom. . is neither instant nor complete. It is essential, however, that
Turning back to the Lotka model, let us consider for ag|| these details weakly affect the main oscillation
moment only a random deposition of particlésonto an  characteristic—the period. On the other hand, the detailed
initially empty lattice[pure adsorbtion according to EQ)].  picture must be considered when discussing the qualitative
Then the distribution of particle& at some time is exactly  aspects of oscillations—such as synchronization between
the same as of the marked sites in the percolation problergitferent parts of the lattice.
described above. The average concentrafig(t) plays the The exact solution of MF equationd1) and (12) is
role of the marking probabilitp. The average cluster size strajghtforward but lengthy. Therefore, keeping in mind that
grows as the concentration of particles increases and a spafie are interested only in the limit of<7<1, we omit the

ning cluster ofA’s appears whe@a(t)~pc. terms containingy and find the solution up to the first order
Now we recall that there are also particlBsn the sys-

tem. Thus, we can formulate the following simplified kinetic

(11)

When the concentratiof©,(t) reaches the percolation
eshold again, a short lasting chain of reacti¢®scon-
rts almost alA’s into B’s and the cycle returns back to the
initial state (equivalent tot=0). The oscillation period- is
determined from the equation

scheme of the oscillations in the Lotka model applicable for Cat)=1—e" ¢t o<t<r, (14)
the case obmall { values.
Assume that the largestcluster is spanning the lattice at Ca(h=pe!, O<t<r (15)

the moment when it touches one of the few remainihg
particles. At this moment, the autocatalytic conversion be-
comes dominant and turns most of thés into B’s. The
initial moment ¢=0) immediately after this global turnover
can be characterized by conditiol®,(0)=0 and Cg(0)
=p.. We neglect all spatial correlations between particle
afterwards and assume the distribution of baAtandB par-
ticles to be random and independent. The evolution of th
reaction system at timegs>0 is dominated by two processes
occurring at different time scale§) the fast decay of par-
ticles B [lifetime 1/(1—¢)~1] and (ii) the slow accumula- In(1-p.)
tion of newA'’s (rate{<1). We neglect the loss of particles Cmin(L)=— —pc. (17)
A due to reaction, Eq3) [and, if y#0, Eq.(4)], until Ca(t) In(L%,)
approaches closely to the percolation threshold, and assume
that the concentration d8 decreases quickly to a very low The logarithmic dependence 6f,;, on L explains why it
background value before largeclusters form. is very hard to come close to the limjt—~0 in direct simu-

It should be mentioned that the background value oflations. We expect the estimat&7) to be less precise than
Cg(1) is undoubtedly very sensitive to a/producing re- that of frequency(16) because it depends on the assumption-
actions even with small rates. It might influence the lengthsensitive background d@ particles.

fo=1/7=—¢/In(1—p,). (16)

We also estimate the minimal value 6% {,;, at which
oscillations on dinite lattice are possibléor y=0). As was
S’already discussed in Sec. ll, lattice poisoning occurs iBall
articles desorb. By setting the minimal concentratiorBof
articlesCg(7) equal to one particle per lattice, we find, for
the lattice of linear sizé& and dimensiord,
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FIG. 1. Oscillation frequency vs adsorbtion radtegboth in di- FIG. 2. Oscillation frequencies for lattices of different topology

mensionless unijs Simulation data on a 40964096 square lattice vs parametelf (dimensionless unijs Simulation data for square

with y=0 (M) and y=5x10° (0O) are compared to the fre- (M,0), triangle (A,A), and honeycomb ¢ , ¢ ) lattices lie on a

guency estimate, Eq16) (the straight solid ling More precise  single line if multiplied by—In(1—p.) according to Eq(16). Solid

values of the frequency calculated from the exact solution of Egsand open symbols stand far=0 and y=5x10"° during each

(12) and(12) are indicated by the dashed curve. The inset shows theimulation, correspondingly.

amplitude of the first harmoniP(fy) in units set by the normal-

ization, Eq.(9), as a function of. can be extracted from the power spectra of simulation data.
V. SIMULATION RESULTS Before we proceed to a furt'her analy'5|s of thg mod'el, we first

test our spectrum estimation algorith(described in Sec.

A. Oscillation frequency Il B) on a purely periodic signal.

First we focus now on the frequency sjnchronizeds- As the test data we choose the partiéleconcentration
cillations which our simplified scheme applies to. As we arediVen by the analytical solution, E¢14). The power spec-
interested in the case of smll the problem of lattice poi- trum is expected here to be a set of discrete harmonics lo-

soning becomes significant. The minimal valug’aft which ~ cated at integer multiples of the main frequerigy The am-
oscillations were still observable in simulations on a squardlitudes of the peaks must decrease liké > as follows
4096x 4096 lattice with no modifications of the initial model from the Fourier transform of Ec(14). By inspecting the
(y=0) was {min=0.05. It is in reasonable agreement with double-logarithmic plot in Fig. 3, one can see that the aver-
the estimatg17) which gives for this casé,,,=0.056. The aged periodogram PSEO) gives a correct picture of the
additional reaction(4) with y=5x10"° was used for/  spectrum. The minimal value d?,(f) between the neigh-
<{min. Results are plotted in Fig. 1. Data points for both boring harmonics £3x10°) is limited by the frequency
cases overlap nicely. This indicates the usefulness of the adesolution of the PSE and by the effects of signal power
ditional A— B reaction in the study of oscillations. aliasing at frequencies abovg into the interval (0£).
Figure 1 demonstrates the accuracy of the frequency estFhe aliasing is also responsible for deviations from the
mate(16) for —0. More precise calculations based on thestraight line at high frequencies observed in Fig. 3.
exact solution of Eqill) and (12) reveal a Sllght deviation Let us now examine the power Spectra@ﬁ(t) obtained
from a straight lingdashed curve in Fig.)1Simulation data  from simulations of the Lotka model at different valuesZof
for large { deviate even stronger due to ignored effects ofgjgyre 4a) represents the ultimately synchronized state at
reaction(3) in the simplified oscillation scheme. Additional £=0.05. Totally more than 50 harmonics can be observed in

B production leads to slower accumulation &% and, as a he di ; ;
, . ' @2 9 the discrete part of the spectrum with frequencies up.to
result, to smaller frequencies than predicted by the S|mpI|fleé P P g B

oscillation scheme.

Increasing off abovel,,;, leads to a rapid decrease of the 10 ' ' ' ]
oscillation amplitude at={,~0.075 as shown in the inset s ]
in Fig. 1. We will return to this desynchronization phenom- 10 ]
enon in Sec. V B. 108 ]

Use of the percolation parameters for different lattices in e ]
the frequency estimatél6) allows us to compare lattices o 107 ]
with different topologies. Data for square, triangle, and hon- ]
eycomb lattices [§.=0.592 746, 1/2, and 0.6962, corre- 10° ]
spondingly are given in Fig. 2. We see strong evidence that L ]
the oscillation frequency in the Lotka modgh the limit ¢ 10™ — — —

—0) is determined only by the kinetic parameteand lat- 10 10 10

tice percolation thresholgd, .
¢ FIG. 3. Power spectrum of the analytical solution, Bdl), with

{=0.05 for a square lattice. The spectrum is estimated by the av-
eraged periodogram PSE, E(L0), with maximal frequencyfy

In this section we look in more detail at the origin of =32. Absolute values oP(f) conform to the normalization, Eq.
globally synchronized oscillations. Significant information (9), whereas the frequency is dimensionless.

B. Synchronization
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FIG. 4. Power spectrd@(f)
of A particle concentrations af
=0.05, 0.06, 0.07, 0.08, 0.1, and
0.2 [from (a) to (f)]. Simulation
data for a 4098 4096 square lat-
tice, aliasing frequencyfy=32;
units are the same as in Fig. 3.
Crosses in plot(a) denote the
spectrum of the simplified analyti-
cal solution, Eq(14). All straight
lines on the plots have the same
slope of—2.

~3 (surprisingly many for a stochastic simulatjodmpli-  aging over the lattice. In the simplified oscillation scheme we
tudes of the first few harmonics correspond well to the simneglected all correlations in the spatial distribution of par-
plified oscillation schemgcrosses in Fig. @) correspond to ticles by considering, in particular, that a particles are

the peak values in Fig.]3At higher frequenciegbut still  distributed randomly. This assumption corresponds to
below f) the discrete part of the spectrum goes down fastek , ,(r:t)=0. In a real situation, however, the reaction al-
thanf~2. This fact can be easily understood—the major conays creates some correlations in the ensemble of particles.

tribution at high frequencies in the analytical solution is dueTherefore calculation oK a(r;t) from the simulation data
to the instant switch of ali's to B's between the successive can serve for a control of the validity of the simplified oscil-

cycles. In simulations this turnover is more smooth, thu§ation scheme.
leading to sma_IIer power in the spectrum at hlgh frequencies. /o present in Fig. 5 three plots demonstrating the dynam-
At frequencies abové a qualitative change in the Spec- joq ot the autocorrelation functioK 4a(r;t) averaged over

trum occurs: the equidistant discrete harmonics transforna” spatial directions. In the first graplFig. 5@a)], which
Into noise with continuous spectrum obeying the same POWEfustrates the synchronized state, the temporal periodicity of

law ocf 2. : A :
the A-A correlation function is well pronounced. The rapid

Figures 4b)—4(e) give a clear picture of desynchroniza- . o ) :
tion. As the parametef increases, higher harmonics become!Ncréase in time oK aa(r;t) at small distances corresponds

less distinct and transform into noise at lower frequencied® the beginning of global switching from to B. A tail of
f.. The amplitude of the first peak decreases dramaticall}Pnd-range correlations, which can be clearly seen in Fig.

(see the inset in Fig.)lwhile its width grows. At{=0.2 (@), is a result of a short-la_sting chain_of large ava_lanches
[Fig. 4(f)] the whole spectrum is dominated iy 2 noise  that spread through the lattice converting mostAd into
with traces of the first harmonic On|y. B’s. The fO||0Wing decay ofA-A correlations is due to the

Additional information on the transition from the syn- random accumulation of the netvparticles in the place of
chronized to the noise-dominated state can be derived froif@st desorbing3. We emphasize that at the end of a cycle,
the analysis of the spatial correlation function which we de-when correlations are minimal, the spatial distributionfof

fine here as particles is close to that of a random deposition which stan-
, , dard percolation theory applies to. This is a necessary con-
Kyy(it)= (ox(r';)oy(r' +1;t))0 -1 (18) dition for the simplified oscillation scheme to be consistent
’ Cx(1)Cy(1) ’ with simulations.

Last, Fig. %c) presents thé-A correlation function in the
where o(r) is equal to 1 if a site with radius vectoris  desynchronized state which possesses almost no time depen-
occupied by a particlX and 0 otherwise{ ), denotes aver- dence.Ka(r;t) decays on a constant distance which is

FIG. 5. Time-resolved dimen-
sionless A-A spatial correlation
function Kaa(r,t) on a square
1024x 1024 lattice for (@) ¢
=0.06,(b) 0.07, andc) 0.08. Dis-
tance is given in lattice constants
and time in dimensionless units.
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much less than the system size. No attempts were made to Hovi et al. have already notefP] the similarity between

estimate this distance or its dependence/on the model under consideration and the FF modelA Ifs
understood as a tree aBdas a fire, then the FF model can be
VI. DISCUSSION described by the same equatiqii$—(4) as the Lotka model,

but with other limiting conditions on the rates. If we denote

The distribution of avalanche siz€4s,{), wheresis the  tne rates of the reactions*A, B—*, A+B—2B, andA
number ofB’s born in an avalanche, was intensively studied B py k,, k,, ks, andk, correspondingly, then the FF
by Hovi et al. [9]. Based on a large amount of simulation model'is critical provided that
data, they found that for smafl the distributionP(s,?) de-
cays as a power law is up to a certain cutoff size, - ky(=f)<k(=p)<k,=ksz(=1) (19
Significant evidence was found th&y ., diverges at=0 in
the thermOdynamiC limit. Therefore the authors claim that(we give the notation of Re'ﬂ:zz:l in parentheses In the

the point{.=0 is critical in the Lotka model. Lotka model the criticality is observed if
Depending on how close the system is to its critical point,
the cutoff in avalanche size distribution occurs due to either k(=) <ky(=~1)<kz(=). (20)

the system’s intrinsic dynamics or finite-size effects. In the

former case(far from ), smax depends on” but not onL |y hoth the FF and Lotka models criticality occurs due to a
while the opposite in the latténear to{.). This behavior of  double separation of time scales. As was pointed[aat,

SmaxWas observed but not studied in de{&ll. We continue  such a condition requires no fine-tuning and therefore may
this line of reasoning and propose the following picture ofpe quite general.

synchronization in the Lotka model.

Let us denote ag, the value of{ at which the cutoff
distance(linear size of a cluster containirgy,,, particlesA)
reaches the size of the system. We have studied here the oscillatory irreversible reaction

At sufficiently large(> o) the cutoff sizesy,,xis much  A+B—2B by means of analytical methods and MC simu-
less than the total number of sites in the system and globaations on different types of two-dimensional lattices. The
avalanches almost never occur. Single avalanche negligiblyrean-field approximation fails even in a qualitative descrip-
affects the global concentration of particles and we observeion of the system, but the equations of standard chemical
the steady state. In this regime different parts of the latticéinetics can be still useful for an analytical estimate provided
are uncorrelated as one can directly see in simulafibies  there exist additional heuristic arguments based on the per-
5(c)]. The power law size distribution of thimdependent colation mechanism of auto-oscillations in this reaction.
avalanches results in a power law spectr(iitv f noise”). Oscillations in the Lotka model arise from the separation
This mechanism of generatingflhoise was discussed in of time scales: all but a fes particles desorb quickly, pro-
great detail in a classical paper by Bak, Tang, and Wiesenviding free space for the slow growing percolating network
feld [21], who introduced the concept of self-organized criti- of A particles. The resulting oscillation frequency is then
cality in order to explain the wide abundance of this phe-proportional to theA adsorbtion rate and related to the topol-
nomenon. The forest-firs(FF) model of self-organized ogy of the lattice through the percolation threshold. Simula-
criticality by Drossel and SchwalpP2], which we will dis-  tions on different lattices confirm this mechanism.

VII. CONCLUSIONS

cuss in a moment, was shown to reved ddise in the fire A globally synchronized state is observed for small values
density power spectrum with the same exponent-éf in  of the control parametef. Increasing of{ brings closer the
two dimensions as we observe for the Lotka model. time scales of the adsorbtion and desorbtion reactions, thus

Decreasing of{ moves the system towards its critical leading to desynchronization. As a result, qualitative changes
point. For{<{, finite-size effects start to play a major role. in the power spectrum of oscillations occur: a set of discrete
Large avalanches become correlated in time: a single largearmonics transforms intb™2 noise previously reported for
event influences the whole system which now needs sommodel systems of self-organized criticality. Based on these
relaxation time for making another large avalanche possiblesbservations, we propose a qualitative picture of global syn-
Indeed, we saw in the power spectfédg. 4) that large size chronization in the Lotka model as a finite-size effect near
avalanchegwhich occur at low frequencigsare synchro- the systems’s critical poinf,=0.
nized while small ones are still uncorrelated, producing
power law noise at high frequencies.
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