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Global oscillation mechanism in the stochastic Lotka model

V. Kashcheyevs* and V. N. Kuzovkov
Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
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The microscopic one-parameter kinetic model of the oscillatoryA1B→2 B reaction ~Lotka model! is
studied using direct Monte Carlo simulations and analytical methods. Percolation is proposed as the mecha-
nism of global oscillations that are not limited to any finite size of a system. An analytical estimate of the
oscillation frequency is derived and compared to computer simulations. We also observe the transition from
synchronized oscillations to specificf 22 noise in two dimensions which was previously reported for self-
organized critical models.
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I. INTRODUCTION

The necessity for research on surface reaction system
dictated by their enormous practical importance for hete
geneous catalysis, as well as by many complex and fasc
ing nonlinear phenomena they exhibit, such as spatial
temporal oscillations, kinetic phase transitions, pattern
mation, chaotic behavior, etc. A comprehensive review
experimental results in this area is given in Ref.@1#.

In recent years, significant progress has been achieve
stochastic models of surface reaction systems, which a
one to study in great detail the mechanisms responsible
the above-mentioned phenomena@2–5#. In these models el-
ementary reaction steps, such as adsoption, reaction, an
sorbtion, are represented by a set of stochastic rules
describe possible changes in the system configuration.
transition probabilities can be related to reaction rates
considering the master equation of the process@3#.

One of the advantages of these models is their simpli
and the possibility of straightforward simulations. Howev
due to the diversity of reactions taking place in real syste
the number of parameters is usually too large for a comp
analysis. Thereforesimplifiedmodel systems are of particula
interest. Such models with a minimum number of parame
can represent, however, the essential features of a
system.

The simplest stochastic model possessing temporal o
lations is a Lotka-type lattice model introduced in Ref.@6#.
There are two kinds of particles in the Lotka model, sayA
andB. ParticleA adsorbs on the lattice with ratez, B desorbs
with rate 12z, and the only bimolecular reaction is the in
finitely fast autocatalytic conversionA1B→2 B. Mai et al.
@6# compared the results given by different analytical a
proaches to the results of Monte Carlo~MC! computer simu-
lations, which appear to be the most reliable. The sys
shows two different kinetic states: highly regular tempo
oscillations of global particle densities and a steady s
with nearly constant global coverages. Concentration os
lations appear for small values of the control parametez.
Similar simulations in the Lotka model were observed in
reviews by Jansen@7# and Nieminen and Jansen@8#, who
also reported oscillations. The role of the space dimens
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was studied by Hoviet al. @9#: oscillations were found in two
and three, but not in one, dimension. As was shown rece
@10#, forced periodic perturbation of the control parameter
the Lotka model leads to a series ofresonance phenomena.
On the contrary, the recently studied@11# Lotka-Volterra lat-
tice model has more parameters and shows less unpredic
behavior than the model under consideration.

The Lotka model is of specific interest in several aspe
First, the question how local oscillations in different areas
the surface become coherent is the subject of wide discus
in the literature on surface reaction systems. The existenc
globally synchronized oscillations not limited to any fini
range is unique for such a simple model as the Lotka mo
More complex systems@3,4#, on the contrary, exhibit oscil-
latory behavior only up to a certain size of the system.
these systems the mechanism leading to a synchronizatio
particle diffusion with a finite rate. Diffusion usually bring
synchronization only up to some finite scale which depe
on the diffusion constant@4,12#. Only the latest research@13#
showed the principal possibility of the amplification of loc
oscillations in a system with diffusion~by the so-calledsto-
chastic resonance!, thus transforming them into global osci
lations in a narrow range of the system parameters. In
Lotka model we have the seemingly more trivial possibil
of global synchronization via a chain of infinitely fast rea
tions A1B→2 B. However, the condition of an infinite re
action rate is not enough for synchronization because b
oscillating and steady states are observed in the Lotka m
depending on the parameterz. A study of the transition be-
tween these two regimes has not been done yet and it is
of the tasks in the present study.

The second reason of interest in the Lotka model is
critical behavior which was studied numerically by Ho
et al. @9#. They have found a power law dependence in
size distribution of the reaction avalanches with the cut
size diverging in the limitz→zc50. This fact and some
additional features we report on in the present paper~such as
1/f noise! are common to forest-fire models of self-organiz
criticality @14#. Our findings suggest that the criticality of th
Lotka model plays a significant role in synchronization.

In this paper, we compare the Lotka model to the we
studied site percolation problem on a discrete lattice.
discuss a special synchronization mechanism—percola
mechanism—and propose an analytical solution based o
simplified analysis of kinetic equations. The analysis is va
©2001 The American Physical Society07-1
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for the coherently oscillating state near the critical pointzc .
Analytical expressions of the oscillation frequency are th
obtained and tested by MC simulations on different regu
two-dimensional lattices. In addition, the transition to t
steady state is studied in particular detail. Analysis of
global concentration power spectra reveals a power lawf 22

in the continuous part of the spectrum. Comparison of d
ferent data enables us to draw a qualitative picture of os
lations that connects synchronization on an arbitrary la
scale to the criticality of the Lotka model.

The structure of the paper is the following. Section
gives an exact model definition and parameter descriptio
Besides the standard Lotka model, we consider also the
sible additionalA→B reaction. Details of MC simulations
and power spectra analysis are discussed in Sec. III. The
section is Sec. IV, in which we introduce a simplified osc
lation scheme based on the percolation mechanism and
tain an analytical expression for the oscillation frequen
Simulation results are reported in Sec. V and discusse
connection with analytical results and criticality in Sec. V
A brief summary in Sec. VII completes the paper.

II. MODEL DESCRIPTION

The Lotka model can be interpreted in terms of hetero
neous catalysis as the following set of reactions between
kinds of particlesA andB and a vacant site* :

A~gas!1* →
z

A~ads!, ~1!

B~ads! →
12z

B~gas!1* , ~2!

A~ads!1B~ads!→
`

2 B~ads!. ~3!

Time is rescaled in a way that the only control parame
is the adsorbtion ratez for particlesA varying from 0 to 1.
This condition sets the natural dimensionless rate, freque
and time units for the model. The autocatalytic reaction
Eq. ~3! takes place every time whenA andB occur as neares
neighbors.

Interpretation of the autocatalytic reaction@Eq. ~3!# in the
Lotka model can be different. One possibility is to consid
A asB plus an additional ligand that desorbs immediately
A and B come into contact. More evident is the biologic
interpretation of infection spreading@15#. If healthy species
~A! come into contact with infected ones (B), then A also
become infected, Eq.~2!. Equations~1! and~3! represent the
birth of the healthy and death of the infected species, co
spondingly.

The subsequent stages of oscillations for small valuesz
can be understood as follows:~i! immortal healthy speciesA
are born with a constant ratez @see Eq.~1!#; ~ii ! occasional
contact with already infected organisms immediately infe
the whole cluster, thus turning allA’s in it into B’s @see Eq.
~3!#; ~iii ! infected speciesB die out according to Eq.~2!,
providing a free substrate for the birth of newA’s.

Nontrivial behavior is possible only if some particlesB
are initially present in the system, because there is no so
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of B in the Lotka model based on Eqs.~1!–~3!. The absence
of such a source brings a principal instability of oscillatio
on finite lattices. If occasionally all particlesB desorb from
the surface, then the autocatalytic reaction is stopped and
lattice becomes poisoned by particlesA.

The nonzero probability of such a ‘‘catastrophe’’ pos
methodical difficulties for the numerical study of oscillation
in the case of largeB desorbtion rates~smallz ’s!. In order to
avoid use of extra large lattices or limited simulation tim
one has to modify the model. One of the possibilities@9# is
the so-called constantB-coverage ensemble method. How
ever, this technique does not provide the correct time dep
dence, which is essential to our study. Instead of modify
simulation algorithm, we consider a weak source ofB:

A~ads!→
g

B~ads!. ~4!

The new reaction should be understood as a weak nois
particlesB that could be present in model situations~bond
weakening fluctuation on a catalyst surface or spontane
infection in biological interpretation!. In all cases when this
additional reaction is switched on, the newsmall parameter
g lies in interval (1027–1025) and conditiong!z is satis-
fied.

The main macroscopic observables of the model are
bal particle concentrations~coverages! CX(t)(X5*, A,B),
which we define as fractions of lattice sites occupied by p
ticles X at time t. The concentrations obey the conservati
law

C* ~ t !1CA~ t !1CB~ t !51. ~5!

The formal exact kinetic equations for the global conce
trations read as follows:

d

dt
CA~ t !5zC* ~ t !2gCA~ t !2R, ~6!

d

dt
CB~ t !52~12z!CB~ t !1gCA~ t !1R, ~7!

whereR is the reaction term. As was shown@6#, this term
cannot be calculated in the framework of the simplest
proximations such as the mean field~MF! or pair approxi-
mation. More precisely, such simplified calculations lead
results totally different from those given by the MC simul
tions and cannot account for oscillations. The difficulties
the analytic description of the system lie not in the infinite
large reaction rate@one can start with some finite rateK in
Eq. ~3! and then take the limitK→`#. The problem is that
the reaction term in Eqs.~6! and ~7! is not the function of
only concentrations like the traditional the MF expressi
R5KCACB or analogous, but the functional of thespatial
distributionof particles. In the Lotka model, this distributio
undergoes nontrivial changes during the reaction~we will
relate them later to a percolation!; therefore, the reaction
term is unknown.

Despite these difficulties, we are going to show that E
~6! and ~7! are still useful for an analysis of the problem
7-2
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GLOBAL OSCILLATION MECHANISM IN THE . . . PHYSICAL REVIEW E 63 061107
applied to timaree intervals on which the reaction termR can
be omitted for some reason. The resulting solutions can
then tailored together based on additional heuristic assu
tions about oscillation mechanism in the Lotka system.

III. METHODS

A. Simulation procedure

An overview of MC simulation techniques for surface r
action systems can be found in Ref.@16#. Here we give only
a brief description of the simulation procedure that was u
for the Lotka model in our particular study.

We start at timet50 with the lattice randomly filled by
particlesB at fraction 0.5. Time evolution according to Eq
~1!–~3! is based on a constant time stepDt51/L2 and con-
sists of the following steps.

~1! Update the clockt→t1Dt.
~2! Pick a site randomly.
~3! If the site is occupied byB, then make it empty with

probability 12z and go to~1!.
~4! If the site is occupied byA, then proceed to~7! with

probability g.
~5! If the site is vacant, then fill it withA with probability

z; otherwise, return to~1!.
~6! Check forB’s in the nearest-neighbor sites. If noB

found, then go to~1!.
~7! Identify all A’s belonging to the same cluster with th

A in the selected site. Turn them all intoB’s. Go to ~1!.
A special feature of the Lotka model is the infinite rate

the autocatalytic step. Since the pioneering work of Z
et al. @17# infinitely fast reactions have been successfu
treated by the means of MC simulations. In our algorithmno
clock updateis done until allA→B conversions dictated by
the reaction rule have been processed in step~7!.

The system was simulated on two-dimensional square
angle, and honeycomb lattices with the total number of s
in each lattice (1 –16)3106. Periodic boundary condition
have been applied in each case.

Each simulation lasted for (4 –10)3103 time units totally.
The data for analysis were collected only after the sys
had relaxed through a transient period of 103 time units.

B. Data analysis

In the present study simulation data are mainly analy
by calculating the power spectrum of global concentratio
CX(t). Therefore the question of correct power spectrum
timation is of special significance.

Direct application of a discrete Fourier transform toCX(t)
sampled atn points tk5kDT(k50,1, . . . ,n21), with DT
5T/n, gives a periodogram power spectrum estimator~PSE!
@18#:

PX~ f !5
8

n2U(k50

n21

wkCX~ tk!e
22p i f t kU2

. ~8!

We use the Hann window functionwk5(1/2)@1
2cos(2pk/n)# to minimize distortions in the estimate of
spectrum with sharp features~such as separate harmonics
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a periodic signal!. The frequency resolution of Eq.~8! is
determined by the half-width of the window function in th
frequency domain and varies asD f }T21 with a proportion-
ality factor of the order of unity.

The normalization ofPX( f ) satisfies the equation

1

f N
E

0

f NPX~ f !d f'
1

TE0

T

CX
2~ t !dt, ~9!

where f N51/(2DT) is the Nyquist aliasing frequency.
Spectral analysis of stochastic signals such as MC si

lation data is more complicated than in the case of a de
ministic model. Statistical variance ofPX( f ) grows as the
ratio of the transform window lengthT to the coherence time
of the signal increases@18#.

Therefore a more robust amplitude estimate can
achieved by dividing the whole time interval of availab
data into pieces of possibly smaller length and then perfo
ing a separate Fourier transform on each individual subin
val. Results are then averaged, thus giving a statistic
more stable power estimate of the cost of the reduced
quency resolution.

Averaging overm successive subintervals each of leng
T leads to an averaged periodogram PSE

P~ f !5
8

mn2 (
l 50

m21 U(
k50

n21

wkCX~ tk1 lT !e22p i f t kU2

, ~10!

which is more suitable for the study of noisy signals th
PX( f ).

The following iterative procedure was used for estimati
of the main oscillation frequencyf 0 and corresponding
powerP( f 0).

~1! SampleN values ofCX(t) with DT5226.
~2! Set the initial approximation off 0 to f 085z.
~3! Calculate n→ the nearest integer to 10/(f 08DT),

m→ the integer part ofN/n.
~4! Find the maximum ofP( f ) in interval (0 –f N). Take

its position as the next approximationf 08 .
~5! Repeat steps~3! and ~4! until n does not change.
~6! Assume the main frequencyf 0 to be equal to the las

value of f 08 . The first harmonic power estimate is the val
of P( f 0) found in step~4!.

The above-described procedure is designed to match
frequency resolutionD f '0.1f 0 and gives a stable estimat
of the spectral power under the first peak in a discrete sp
trum if its width is less thanD f . The values ofDT and f 08 in
steps~1! and ~2! are based on a previous analysis of t
Lotka model data.

IV. ANALYTICAL RESULTS

The autocatalytic transformationA1B→2 B spreads be-
tween the nearest neighbors. This feature of the Lotka mo
relates it to standard problems of percolation theory wh
we overview very briefly below.

In a standardsite percolationproblem sites of an infinite
lattice are marked with some probabilityp independently
7-3
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V. KASHCHEYEVS AND V. N. KUZOVKOV PHYSICAL REVIEW E 63 061107
each of the other. The distribution of clusters consisting
these marked sites is of a relevant interest. Percolation th
states@19# that an infinite cluster of marked sites can b
formed with nonzero probability if and only if the markin
probabilityp is greater than some threshold valuepc , which
is called thepercolation threshold. The value ofpc depends
on the dimension and topology of the lattice. The numeri
values ofpc for different lattices are cited in many pape
~see, for example, Ref.@20#!.

Criticality of the standard percolation problem makes
the characteristic linear sizes proportional to a single len
scale jp which diverges near the percolation threshold
jp}upc2pu2n. The critical exponentn depends on the spa
tial dimension of the lattice. Properly defined the avera
linear cluster size is proportional tojp and also diverges a
the percolation threshold.

When performing simulations of a percolation syste
only finite lattices may be used. In this case percolation pr
erties depend on the relation between the system’s intri
length scalejp and the lattice sizeL. If jp!L, then the
percolation theory for infinite lattices applies well. On th
other hand, in the close vicinity of the critical pointpc finite-
size effects can be no longer neglected and one hasjp'L. In
the latter case, instead of the infinite cluster, one observ
cluster of a linear sizeL spanning the lattice from top to
bottom.

Turning back to the Lotka model, let us consider for
moment only a random deposition of particlesA onto an
initially empty lattice@pure adsorbtion according to Eq.~1!#.
Then the distribution of particlesA at some timet is exactly
the same as of the marked sites in the percolation prob
described above. The average concentrationCA(t) plays the
role of the marking probabilityp. The average cluster siz
grows as the concentration of particles increases and a s
ning cluster ofA’s appears whenCA(t)'pc .

Now we recall that there are also particlesB in the sys-
tem. Thus, we can formulate the following simplified kine
scheme of the oscillations in the Lotka model applicable
the case ofsmall z values.

Assume that the largestA cluster is spanning the lattice a
the moment when it touches one of the few remainingB
particles. At this moment, the autocatalytic conversion
comes dominant and turns most of theA’s into B’s. The
initial moment (t50) immediately after this global turnove
can be characterized by conditionsCA(0)50 and CB(0)
5pc . We neglect all spatial correlations between partic
afterwards and assume the distribution of bothA andB par-
ticles to be random and independent. The evolution of
reaction system at timest.0 is dominated by two processe
occurring at different time scales:~i! the fast decay of par
ticles B @lifetime 1/(12z)'1# and ~ii ! the slow accumula-
tion of newA’s ~ratez!1). We neglect the loss of particle
A due to reaction, Eq.~3! @and, if gÞ0, Eq.~4!#, until CA(t)
approaches closely to the percolation threshold, and ass
that the concentration ofB decreases quickly to a very low
background value before largeA clusters form.

It should be mentioned that the background value
CB(t) is undoubtedly very sensitive to anyB producing re-
actions even with small rates. It might influence the len
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scale of synchronization, but appears not to affect the os
lation period that we are going to estimate in a moment.

Based on the assumptions made above we use the ki
equations~6! and ~7! omitting the reaction termR:

d

dt
CA~ t !5zC* ~ t !2gCA~ t !, ~11!

d

dt
CB~ t !52~12z!CB~ t !1gCA~ t !. ~12!

When the concentrationCA(t) reaches the percolatio
threshold again, a short lasting chain of reactions~3! con-
verts almost allA’s into B’s and the cycle returns back to th
initial state~equivalent tot50). The oscillation periodt is
determined from the equation

CA~t!5pc . ~13!

The simplified oscillation scheme given above conta
some significant assumptions, which are not necessarily
in a real simulation. Let us mention some of them:~i! grow-
ing A clusters may switch toB before or after the percolation
threshold is reached,~ii ! the distribution of particles is no
exactly random, and~iii ! the turnover to theB-dominant state
is neither instant nor complete. It is essential, however, t
all these details weakly affect the main oscillatio
characteristic—the period. On the other hand, the deta
picture must be considered when discussing the qualita
aspects of oscillations—such as synchronization betw
different parts of the lattice.

The exact solution of MF equations~11! and ~12! is
straightforward but lengthy. Therefore, keeping in mind th
we are interested only in the limit ofg!z!1, we omit the
terms containingg and find the solution up to the first orde
in z:

CA~ t !512e2z t, 0<t,t, ~14!

CB~ t !5pce
2t, 0<t,t, ~15!

f 0[1/t52z/ ln~12pc!. ~16!

We also estimate the minimal value ofz5zmin at which
oscillations on afinite lattice are possible~for g50). As was
already discussed in Sec. II, lattice poisoning occurs if alB
particles desorb. By setting the minimal concentration oB
particlesCB(t) equal to one particle per lattice, we find, fo
the lattice of linear sizeL and dimensiond,

zmin~L !52
ln~12pc!

ln~Ldpc!
. ~17!

The logarithmic dependence ofzmin on L explains why it
is very hard to come close to the limitz→0 in direct simu-
lations. We expect the estimate~17! to be less precise tha
that of frequency~16! because it depends on the assumptio
sensitive background ofB particles.
7-4
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V. SIMULATION RESULTS

A. Oscillation frequency

First we focus now on the frequency ofsynchronizedos-
cillations which our simplified scheme applies to. As we a
interested in the case of smallz, the problem of lattice poi-
soning becomes significant. The minimal value ofz at which
oscillations were still observable in simulations on a squ
409634096 lattice with no modifications of the initial mode
(g50) waszmin50.05. It is in reasonable agreement wi
the estimate~17! which gives for this casezmin50.056. The
additional reaction~4! with g5531026 was used forz
,zmin . Results are plotted in Fig. 1. Data points for bo
cases overlap nicely. This indicates the usefulness of the
ditional A→B reaction in the study of oscillations.

Figure 1 demonstrates the accuracy of the frequency
mate~16! for z→0. More precise calculations based on t
exact solution of Eqs.~11! and~12! reveal a slight deviation
from a straight line~dashed curve in Fig. 1!. Simulation data
for large z deviate even stronger due to ignored effects
reaction~3! in the simplified oscillation scheme. Additiona
B production leads to slower accumulation ofA’s and, as a
result, to smaller frequencies than predicted by the simpli
oscillation scheme.

Increasing ofz abovezmin leads to a rapid decrease of th
oscillation amplitude atz5z0'0.075 as shown in the inse
in Fig. 1. We will return to this desynchronization phenom
enon in Sec. V B.

Use of the percolation parameters for different lattices
the frequency estimate~16! allows us to compare lattice
with different topologies. Data for square, triangle, and ho
eycomb lattices (pc50.592 746, 1/2, and 0.6962, corre
spondingly! are given in Fig. 2. We see strong evidence t
the oscillation frequency in the Lotka model~in the limit z
→0) is determined only by the kinetic parameterz and lat-
tice percolation thresholdpc .

B. Synchronization

In this section we look in more detail at the origin
globally synchronized oscillations. Significant informatio

FIG. 1. Oscillation frequency vs adsorbtion ratez ~both in di-
mensionless units!. Simulation data on a 409634096 square lattice
with g50 (j) and g5531026 (h) are compared to the fre
quency estimate, Eq.~16! ~the straight solid line!. More precise
values of the frequency calculated from the exact solution of E
~11! and~12! are indicated by the dashed curve. The inset shows
amplitude of the first harmonicPA( f 0) in units set by the normal-
ization, Eq.~9!, as a function ofz.
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can be extracted from the power spectra of simulation d
Before we proceed to a further analysis of the model, we fi
test our spectrum estimation algorithm~described in Sec.
III B ! on a purely periodic signal.

As the test data we choose the particleA concentration
given by the analytical solution, Eq.~14!. The power spec-
trum is expected here to be a set of discrete harmonics
cated at integer multiples of the main frequencyf 0. The am-
plitudes of the peaks must decrease like} f 22 as follows
from the Fourier transform of Eq.~14!. By inspecting the
double-logarithmic plot in Fig. 3, one can see that the av
aged periodogram PSE~10! gives a correct picture of the
spectrum. The minimal value ofPA( f ) between the neigh-
boring harmonics ('331029) is limited by the frequency
resolution of the PSE and by the effects of signal pow
aliasing at frequencies abovef N into the interval (0 –f N).
The aliasing is also responsible for deviations from t
straight line at high frequencies observed in Fig. 3.

Let us now examine the power spectra ofCA(t) obtained
from simulations of the Lotka model at different values ofz.
Figure 4~a! represents the ultimately synchronized state
z50.05. Totally more than 50 harmonics can be observe
the discrete part of the spectrum with frequencies up tof c

s.
e

FIG. 2. Oscillation frequencies for lattices of different topolog
vs parameterz ~dimensionless units!. Simulation data for square
(j,h), triangle (m,n), and honeycomb (l,L) lattices lie on a
single line if multiplied by2 ln(12pc) according to Eq.~16!. Solid
and open symbols stand forg50 and g5531026 during each
simulation, correspondingly.

FIG. 3. Power spectrum of the analytical solution, Eq.~14!, with
z50.05 for a square lattice. The spectrum is estimated by the
eraged periodogram PSE, Eq.~10!, with maximal frequencyf N

532. Absolute values ofPA( f ) conform to the normalization, Eq
~9!, whereas the frequency is dimensionless.
7-5
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FIG. 4. Power spectraPA( f )
of A particle concentrations atz
50.05, 0.06, 0.07, 0.08, 0.1, an
0.2 @from ~a! to ~f!#. Simulation
data for a 409634096 square lat-
tice, aliasing frequencyf N532;
units are the same as in Fig. 3
Crosses in plot~a! denote the
spectrum of the simplified analyti
cal solution, Eq.~14!. All straight
lines on the plots have the sam
slope of22.
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'3 ~surprisingly many for a stochastic simulation!. Ampli-
tudes of the first few harmonics correspond well to the s
plified oscillation scheme@crosses in Fig. 4~a! correspond to
the peak values in Fig. 3#. At higher frequencies~but still
below f c) the discrete part of the spectrum goes down fas
than f 22. This fact can be easily understood—the major co
tribution at high frequencies in the analytical solution is d
to the instant switch of allA’s to B’s between the successiv
cycles. In simulations this turnover is more smooth, th
leading to smaller power in the spectrum at high frequenc

At frequencies abovef c a qualitative change in the spe
trum occurs: the equidistant discrete harmonics transf
into noise with continuous spectrum obeying the same po
law } f 22.

Figures 4~b!–4~e! give a clear picture of desynchroniza
tion. As the parameterz increases, higher harmonics becom
less distinct and transform into noise at lower frequenc
f c . The amplitude of the first peak decreases dramatic
~see the inset in Fig. 1! while its width grows. Atz50.2
@Fig. 4~f!# the whole spectrum is dominated byf 22 noise
with traces of the first harmonic only.

Additional information on the transition from the syn
chronized to the noise-dominated state can be derived f
the analysis of the spatial correlation function which we d
fine here as

KXY~r;t !5
^sX~r8;t !sY~r81r;t !& r8

CX~ t !CY~ t !
21, ~18!

wheresX(r) is equal to 1 if a site with radius vectorr is
occupied by a particleX and 0 otherwise;̂ & r8 denotes aver-
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aging over the lattice. In the simplified oscillation scheme
neglected all correlations in the spatial distribution of p
ticles by considering, in particular, that allA particles are
distributed randomly. This assumption corresponds
KAA(r;t)[0. In a real situation, however, the reaction a
ways creates some correlations in the ensemble of partic
Therefore calculation ofKAA(r;t) from the simulation data
can serve for a control of the validity of the simplified osc
lation scheme.

We present in Fig. 5 three plots demonstrating the dyna
ics of the autocorrelation functionKAA(r ;t) averaged over
all spatial directions. In the first graph@Fig. 5~a!#, which
illustrates the synchronized state, the temporal periodicity
the A-A correlation function is well pronounced. The rap
increase in time ofKAA(r;t) at small distances correspond
to the beginning of global switching fromA to B. A tail of
long-range correlations, which can be clearly seen in F
5~a!, is a result of a short-lasting chain of large avalanch
that spread through the lattice converting most ofA’s into
B’s. The following decay ofA-A correlations is due to the
random accumulation of the newA particles in the place of
fast desorbingB. We emphasize that at the end of a cyc
when correlations are minimal, the spatial distribution ofA
particles is close to that of a random deposition which st
dard percolation theory applies to. This is a necessary c
dition for the simplified oscillation scheme to be consiste
with simulations.

Last, Fig. 5~c! presents theA-A correlation function in the
desynchronized state which possesses almost no time de
dence.KAA(r ;t) decays on a constant distance which
s

FIG. 5. Time-resolved dimen-
sionless A-A spatial correlation
function KAA(r ,t) on a square
102431024 lattice for ~a! z
50.06,~b! 0.07, and~c! 0.08. Dis-
tance is given in lattice constant
and time in dimensionless units.
7-6
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much less than the system size. No attempts were mad
estimate this distance or its dependence onz.

VI. DISCUSSION

The distribution of avalanche sizesP(s,z), wheres is the
number ofB’s born in an avalanche, was intensively studi
by Hovi et al. @9#. Based on a large amount of simulatio
data, they found that for smallz the distributionP(s,z) de-
cays as a power law ins up to a certain cutoff sizesmax.
Significant evidence was found thatsmax diverges atz50 in
the thermodynamic limit. Therefore the authors claim th
the pointzc50 is critical in the Lotka model.

Depending on how close the system is to its critical po
the cutoff in avalanche size distribution occurs due to eit
the system’s intrinsic dynamics or finite-size effects. In t
former case~far from zc), smax depends onz but not onL
while the opposite in the latter~near tozc). This behavior of
smax was observed but not studied in detail@9#. We continue
this line of reasoning and propose the following picture
synchronization in the Lotka model.

Let us denote asz0 the value ofz at which the cutoff
distance~linear size of a cluster containingsmax particlesA)
reaches the size of the system.

At sufficiently largez(.z0) the cutoff sizesmax is much
less than the total number of sites in the system and glo
avalanches almost never occur. Single avalanche neglig
affects the global concentration of particles and we obse
the steady state. In this regime different parts of the lat
are uncorrelated as one can directly see in simulations@Fig.
5~c!#. The power law size distribution of theindependent
avalanches results in a power law spectrum~‘‘1/ f noise’’!.
This mechanism of generating 1/f noise was discussed i
great detail in a classical paper by Bak, Tang, and Wies
feld @21#, who introduced the concept of self-organized cr
cality in order to explain the wide abundance of this ph
nomenon. The forest-fire~FF! model of self-organized
criticality by Drossel and Schwabl@22#, which we will dis-
cuss in a moment, was shown to reveal 1/f noise in the fire
density power spectrum with the same exponent of22 in
two dimensions as we observe for the Lotka model.

Decreasing ofz moves the system towards its critic
point. Forz,z0 finite-size effects start to play a major rol
Large avalanches become correlated in time: a single la
event influences the whole system which now needs s
relaxation time for making another large avalanche possi
Indeed, we saw in the power spectra~Fig. 4! that large size
avalanches~which occur at low frequencies! are synchro-
nized while small ones are still uncorrelated, produc
power law noise at high frequencies.

Divergence of the cutoff sizesmax in the limit z→zc sug-
gests that global oscillations are possible onarbitrary large
lattices.

In addition, we return to the plot of the first harmon
PA( f 0) vs z ~see the inset in Fig. 1!. One can see that glo
bally synchronized oscillations emerge quite sharply aftez
is decreased below some threshold value which prov
therefore a good estimate ofz0.
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Hovi et al. have already noted@9# the similarity between
the model under consideration and the FF model. IfA is
understood as a tree andB as a fire, then the FF model can b
described by the same equations~1!–~4! as the Lotka model,
but with other limiting conditions on the rates. If we deno
the rates of the reactions *→A, B→*, A1B→2 B, andA
→B by k1 , k2 , k3, and k4 correspondingly, then the FF
model is critical provided that

k4~[ f !!k1~[p!!k25k3~51! ~19!

~we give the notation of Ref.@22# in parentheses!. In the
Lotka model the criticality is observed if

k1~[z!!k2~'1!!k3~5`!. ~20!

In both the FF and Lotka models criticality occurs due to
double separation of time scales. As was pointed out@22#,
such a condition requires no fine-tuning and therefore m
be quite general.

VII. CONCLUSIONS

We have studied here the oscillatory irreversible react
A1B→2 B by means of analytical methods and MC sim
lations on different types of two-dimensional lattices. T
mean-field approximation fails even in a qualitative descr
tion of the system, but the equations of standard chem
kinetics can be still useful for an analytical estimate provid
there exist additional heuristic arguments based on the
colation mechanism of auto-oscillations in this reaction.

Oscillations in the Lotka model arise from the separat
of time scales: all but a fewB particles desorb quickly, pro
viding free space for the slow growing percolating netwo
of A particles. The resulting oscillation frequency is th
proportional to theA adsorbtion rate and related to the topo
ogy of the lattice through the percolation threshold. Simu
tions on different lattices confirm this mechanism.

A globally synchronized state is observed for small valu
of the control parameterz. Increasing ofz brings closer the
time scales of the adsorbtion and desorbtion reactions,
leading to desynchronization. As a result, qualitative chan
in the power spectrum of oscillations occur: a set of discr
harmonics transforms intof 22 noise previously reported fo
model systems of self-organized criticality. Based on th
observations, we propose a qualitative picture of global s
chronization in the Lotka model as a finite-size effect ne
the systems’s critical pointzc50.
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@13# O. Kortlüke, V.N. Kuzovkov, and W. von Niessen, Phys. Re
Lett. 83, 3089~1999!.

@14# B. Drossel, Phys. Rev. Lett.76, 936 ~1996!.
@15# D.A. Kessler and H. Levine, Nature~London! 394, 556~1998!.
@16# J.J. Lukkien, J.P.L. Segers, P.A.J. Hilbers, R.J. Gelten,

A.P.J. Jansen, Phys. Rev. E58, 2598~1998!.
@17# R. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett.56, 2553

~1986!.
@18# E. O. Bragham,The Fast Fourier Transform and Its Applica

tions ~Prentice-Hall, Englewood Cliffs, NJ, 1988!.
@19# D. Stauffer and A. Aharony,Introduction to Percolation

Theory, 2nd ed.~Taylor & Francis, London, 1992!.
@20# Diffusion in Condensed Matter, edited by J. Kra¨ger, P. Heit-

jans, and R. Haberlandt~Vieweg, Braunschweig, 1998!.
@21# P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A38, 364

~1988!.
@22# B. Drossel and F. Schwabl, Phys. Rev. Lett.69, 1629~1992!.
7-8


